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Abstract

A mathematical model describing concentration-dependent sedimentation in a
centrifuge is suggested. The present model contains the already existing models as
partial cases, and it has some advantages. An interactive system for numerical
solution of the model equations was created. This system simulates the sedimen-
tation processes in a centrifuge. The special inverse problem module of the system

determines particle parameters from the experimental data.

In this paper we suggest a mathematical model describing the concen-
tration-dependent sedimentation in the rotor of a centrifuge. This model

contains the already existing models as partial cases.

It is known (8, 9) that the process of sedimentation is described by the

following parabolic equation:

g li(r(Da—C - ﬁc))
ot ror ar

with boundary condition

0
Da—:-—ﬂc=0, forr=r>0andr=r,>n

1257
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and initial condition
c(r,0) = colr) (1.3)

Here c(r,t) represents the weight concentration of the sedimenting particles
as a function of time ¢ and radial distance r. D is the diffusion coefficient
and ¥ is the average velocity of the sedimenting particles. Usually 9 has
the form

9= A%wzr = Sw¥r @)

where o is the angular velocity of the centrifuge rotor, A is a constant
characteristic for the particle, and T, is the specific volume of the particle,
which means the deviation of the solvent volume for an infinitely small
increase in particle concentration (3). p and m are the density and the
viscosity of the surrounding solution, respectively. The Svedberg coefficient
S can be viewed as the velocity generated by a unit centrifugal force. §
depends on many factors, especially on the shape of the sedimenting par-
ticles as well as on the viscosity and density of the surrounding solution in

- which the sedimentation takes place. What is important for us in this article

is that S depends on the concentration c(r,¢) as well. Experiments carried
out by many authors have shown that, in general, § decreases when particle
concentration increases. Empirically, this relation is described either by

S = S()(]. - klc) (3)
or by

So

s=1+k2C (4)

for different types of particles (3, 8, 13). Here S, is the value of the Svedberg
coefficient for an infinitely diluted solution and k; and k, are empirically
adapted constants. The experimental data show that Eq. (4) is adequate
for particles with a clearly expressed ellipsoid form, while Eq. (3) better
approximates the data for ball-shaped particles.

This situation cannot be considered as satisfactory for at least three
reasons. First, it is desirable to have a unified formula which “works” in
all cases, including the partial cases mentioned above. Second, the coef-
ficients k, and k, in Egs. (3) and (4) do not have easily understandable
physical meanings and have to be determined experimentally in every
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particular case. The third reason is that one of the models predicts a
physically impossible evolution of the process. When Eq. (3) or (4) is
substituted in Eqs. (1.1)-(1.3) (via Eq. 2), we get two mathematical models
which have different behaviors. The model with Eq. (3) adequately de-
scribes the process only when the initial concentration ¢(r) is less than
1/k,. When ¢, is greater than 1/k,, the concentration c(r,t) “blows up,”
i.e., increases to infinity for finite times (15). However, for physical rea-
sons, concentration c(r,) is always smaller than 1. The mathematical model
with Eq. (4) does not manifest this effect (15).

To remove these difficulties, we suggest the following formula which

generalizes Egs. (3) and (4):
1 - (52 + M)C
v

1+ [n]c

Here [n] is the intrinsic viscosity of the particles (3), v is the Simha coef-
ficient (3), which is a well-known function of the axis ratio of the equivalent
hydrated ellipsoid, and 7, is the specific volume of the particle.

To derive this formula we take into account the following effects which
occur when the particle concentration increases: the effect due to the
change of the density and viscosity of the solution (which is now the mixture
of the solvent and the particles) and the so-called backflow effect. The
sedimenting particles replace the surrounding solution and make it flow
backward (1). The aggregation-like effects are not taken into account.

We now proceed to prove Eq. (5). The volume V, of the solution with
g, grams of particles in it is

S =.S0

(5)

Vs = V() + 62 &2
where Vj is the initial volume of the pure solvent.
Then
Vi — =
V‘:=1—v2%:=1—v2c

If p, denotes the density of the pure solvent, the density of the solution,
p, is

Vo + Vi =
P=‘)00ng2=907(:+c=90(1_02c)+0

and therefore
1 =0p=(1—70c) = vpo(l — ) = (1 = Te)(1 — Topg) (6)
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On the other hand, the viscosity of the solution is given as a function of
the particle concentration c as follows (3):

n = mo(l + [n]c + bc? + =) = ne(1 + [n]c) (M

where [n)] is the intrinsic viscosity of the particle and v, is the viscosity of
the pure solvent.

Substituting Eqs. (6) and (7) in Svedberg Eq. (2), we get for the relative
velocity of one particie in the solution

(1 — Typg)(1 — Tyc) 2, _ (1 —x)
WS Bl g

d=A

where

S, = A(l — Uspo)
Mo

Now we take into account the backflow effect. Denote by 9, and 9,, the
actual velocity of the hydrated particles and the solution, respectively. Then
the equilibrium between the transfer of the hydrated particles with partial
volume ¢ and the transfer in the opposite direction of the solution volume,
1 — ¢, takes place:

Vo0 = Il — ¢)
Therefore
V,=9-9,=91-9¢)
The partial volume can be expressed as

N,
¢ = Vhydrl—wgc

where V,,, is the volume of the hydrated molecule, N, is Avogadro’s
number, and M is the molecular weight of the particle.
On the other hand,

Vi No _[n]

Y0
dr
M v
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where v is the so-called Simha coefficient, which is a well-known function
of the axis ratio of the equivalent hydrated ellipsoid. Finally, we have

3 R (R Y P [\ , - v 5
V=31 —¢) = So(l n ['n]c)(l " c)wr S T+ [l w’r

In this way, Eq. (5) is obtained. It should be noted that for small con-
centrations, Eq. (5) could be replaced by both

S = So(l - (Uz + [n] + [n]) ) . ( +s[0n] N [n])

This model contains both of the existing models mentioned above as
partial cases. The experimental data (3, 10) indicate that the model S = S,/
(1 + kyc) is adequate for synthetic polymers of high molecular weight and
for various biological macromolecules with a large axis ratio, such as DNA.
For such macromolecules the intrinsic viscosity [n] and the Simha coeffi-
cient v are large, and [n]c is large even for low concentrations. Then a
good approximation for Eq. (5) is

So
1+ kQC

S =

where k; is close to [n] ([n]/v < [n]). As an experimental verification, we
give the data for tobacco mosaic virus. Lauffer experimentally shows in
Ref. 10 that S = Sy/(1 + 27.8¢c). For tobacco mosaic virus (3, 11),
[n] = 28 mL/g, v = 37, and U, = 0.73 mL/g. By using our model, we
obtain from Eq. (5)

1-(073+28/3N)c _ 1-149% S,
1 + 28¢ 1+ 28 1+ 29.5¢

for a relatively small concentration ¢, which is in good agreement with
Lauffer’s results.

The second model, § = Sy(1 — k\c), fits well the data for globular pro-
teins and spherical viruses. For such particles, v is near to 2.5 and [7] is
somewhat less than 4 mL/g. Then [n]c < 1, even for high concentrations,
and Eq. (5) becomes

S = s0(1 - (vz + [n] + ["]) ) ®)

S=S()
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As an example we give the data for bovine serum albumin. Taylor (12)
found that S = Si(1 — 5.4c), where Sy = 4.31S5. From Ref. 4 we have
[n] = 3.9 mL/g, v = 5.25, and 7, = 0.73, and from Eq. (8) we obtain
S =431(01 - 5.37).

Table 1 gives a comparison of K published data from Ref. 4 and the
corresponding values from our model.

It should be noted, however, that in some cases the values of K, predicted
by our model and the data contained in the above-mentioned table are
essentially different; for instance, for myosin rabbit, myosin rabbit guan-
idine-denatured, and a,-macroglobulin.

The general model of Egs. (1.1)—(1.3) with S from Eq. (5) (via Eq. 2)
is a nonlinear initial boundary value problem for the concentration of the
sedimenting particles. For a nonlinear problem of this type there exists a
global solution for any initial concentrations cy(r) = 0 (15).

An interactive system for a numerical solution of the above initial bound-
ary value problem was created for IBM PC/XT/AT and compatibles. By
means of this system it is possible to simulate sedimentation and separation
processes in a centrifuge. The algorithm for solving the nonlinear boundary
value problem uses the finite elements method presented for this problem
by Claverie, Dreux, and Cohen (3, 6).

TABLE 1
K, K,
published from Egq. (8)
Substance (mL/g) {mL/g)
Polystyrene latex spheres 38.6 33.6
Ovalbumin 6.2 5.8
Bovine serum albumin 5.4 5.4
Met-haemerythrin 7.0 5.3
Lactate dehydrogenase, rat liver 5.2 5.4
Albolase 6.0 55
Aldolase, urea-dissociated 15.0 14.5
Fetuin, calf, oxidized 22.2 22.4
Fibrinogen, bovine, urea-denatured 420 43.4
Zn-a,-glycoprotein, human 6.4 6.5
y-Globulin, human 7.8 7.5
v-Globulin, horse 7.3 7.9
*Pathological macroglobulin” 8.7 8.2
Bushy stunt virus 71 5.4
Myosin, rabbit 73.0 218.5
Gelatin, parent 59.0 56.0
Myosin, rabbit, guanidine-denatured 162.0 94.0

a,-Macroglobulin, human 5.5 8.3
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The input contains information about the centrifuge parameters and the
experimental conditions. The initial particle concentration and the gradient
of the solution can be represented by using the graphical editor. If the user
knows the parameters of the sedimenting particles, he can specify them.
Otherwise he can use a special module of the system to obtain them. This
module solves the inverse problem, i.e., it determines the unknown particle
parameters from the experimental data. Further information about this
module will be given below.

At every moment ¢ the system displays the graph of the function c(r,t)—
the particle concentration versus radius r. At any moment of the calcu-
lations the user can obtain some global characteristics of the solution such
as the mass center, the maximum concentration, and the zone width (which
is the size of the domain where the particle concentration is greater than
a given value).

The simulated experiments are in good agreement with the real exper-
imental data. Table 2 shows the accuracy of the calculations of the global
solution characteristics, such as the radius of the maximum concentration.

Next, some details about the inverse problem module are given. The
nonlinear least-squares method is used (7, 14). The Gauss—Newton method
is well adapted for the minimization of the functional

FP) = S w(Y, - Z(P))

i=1

TABLE 2°
Time
16 h 22h 29h

Co Fsim T exp Tsim rexp Fsim T exp
(mg/mL) (cm) (cm) (cm) (cm) (cm) (cm)

1.015 8.42 8.38 8.96 8.87 9.65 9.55

2.09 8.42 8.38 8.96 8.87 9.66 9.55
11.36 8.38 8.32 8.92 — 9.59 9.50
21.15 8.34 8.25 8.88 8.81 9.56 —
46 8.24 8.19 8.76 8.75 9.42 9.28

“Experimental conditions: Rotor Swd0Ti, R, = 6.84 cm, R,,, = 15.87 cm, 0 = 35,000
rpm; sucrose gradient: 7.5-20.5% w/w; sample: 0.4 mL BSA with initial concentration c,,
Spw = 4.318, Dy, = 6.1 x 1077 cm?*/s, k; = 5.8 mL/g, ; = 0.734 mg/mL; time = 16 h
15 min, 22 h, and 29 h. ry, and r,, are the radius of the maximum concentration from
simulation and experiment, respectively.
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TABLE 3°
A So ky
(mg/mL) (error %) (error %)
0.002 0.2 0.17
0.015 225 0.3
0.027 2.5 3.1

“Calculations are made for Sy, = 40S,
Dy, = 60 X 1077 cm?/s, k, = 0.3 mL/mg, and
all other experimental conditions are as in Table
2.

where Y;(i = 1...m) are the experimental data, P is the vector of the
unknown parameters, Z;,(P) are the simulated data corresponding to Y,
and w; are appropriately chosen weights. During the calculations the Ja-
cobian is determined with the finite difference approximation.

The test of the inverse problem module is done in the following way.
The solution of the system with known parameters is disturbed randomly
in the corridor of a given error. These disturbed data are used as input
experimental data for the inverse problem module.

Table 3 shows the accuracy of the estimate of the parameters S, and k;,
for random error with different SD (SD = VF(P)/w(m — p), where
w = Zw;/m and p is the number of the unknown parameters).
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