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Abstract 
A mathematical model describing concentration-dependent sedimentation in a 

centrifuge is suggested. The present model contains the already existing models as 
partial cases, and it has some advantages. An interactive system for numerical 
solution of the model equations was created. This system simulates the sedimen- 
tation processes in a centrifuge. The special inverse problem module of the system 
determines particle parameters from the experimental data. 

In this paper we suggest a mathematical model describing the concen- 
tration-dependent sedimentation in the rotor of a centrifuge. This model 
contains the already existing models as partial cases. 

It is known (8, 9) that the process of sedimentation is described by the 
following parabolic equation: 

with boundary condition 

(1.2) 
ac 
ar 

D- - 9c  = 0, for r = rl > 0 and r = r2 > rl 

1257 
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1258 CHRISTOV ET AL. 

and initial condition 

Here c(r,t) represents the weight concentration of the sedimenting particles 
as a function of time t and radial distance r .  D is the diffusion coefficient 
and 6 is the average velocity of the sedimenting particles. Usually 6 has 
the form 

where w is the angular velocity of the centrifuge rotor, A is a constant 
characteristic for the particle, and Z2 is the specific volume of the particle, 
which means the deviation of the solvent volume for an infinitely small 
increase in particle concentration (3). p and q are the density and the 
viscosity of the surrounding solution, respectively. The Svedberg coefficient 
S can be viewed as the velocity generated by a unit centrifugal force. S 
depends on many factors, especially on the shape of the sedimenting par- 
ticles as well as on the viscosity and density of the surrounding solution in 
which the sedimentation takes place. What is important for us in this article 
is that S depends on the concentration c(r,t) as well. Experiments carried 
out by many authors have shown that, in general, S decreases when particle 
concentration increases. Empirically, this relation is described either by 

or by 

s=- SO 
1 + k2c (4) 

for different types of particles (3,8,13).  Here So is the value of the Svedberg 
coefficient for an infinitely diluted solution and kl and k2 are empirically 
adapted constants. The experimental data show that Eq. (4) is adequate 
for particles with a clearly expressed ellipsoid form, while Eq. (3) better 
approximates the data for ball-shaped particles. 

This situation cannot be considered as satisfactory for at least three 
reasons. First, it is desirable to have a unified formula which "works" in 
all cases, including the partial cases mentioned above. Second, the coef- 
ficients kl and k2 in Eqs. (3) and (4) do not have easily understandable 
physical meanings and have to be determined experimentally in every 
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MATHEMATICAL MODELING OF SEDIMENTATION PROCESSES 1 259 

particular case. The third reason is that one of the models predicts a 
physically impossible evolution of the process. When Eq. (3) or (4) is 
substituted in Eqs. (1.1)-(1.3) (via Eq. 2), we get two mathematical models 
which have different behaviors. The model with Eq. (3) adequately de- 
scribes the process only when the initial concentration co(r) is less than 
l /k , .  When c, is greater than l / k l ,  the concentration c(r,r) “blows up,” 
i.e., increases to infinity for finite times (15). However, for physical rea- 
sons, concentration c(r,r) is always smaller than l. The mathematical model 
with Eq. (4) does not manifest this effect (15). 

To remove these difficulties, we suggest the following formula which 
generalizes Eqs. (3) and (4): 

Here [q] is the intrinsic viscosity of the particles (3) ,  Y is the Simha coef- 
ficient (3),  which is a well-known function of the axis ratio of the equivalent 
hydrated ellipsoid, and E2 is the specific volume of the particle. 

To derive this formula we take into account the following effects which 
occur when the particle concentration increases: the effect due to the 
change of the density and viscosity of the solution (which is now the mixture 
of the solvent and the particles) and the so-called backflow effect. The 
sedimenting particles replace the surrounding solution and make it flow 
backward (1). The aggregation-like effects are not taken into account. 

We now proceed to prove Eq. (5 ) .  The volume Vs of the solution with 
g2 grams of particles in it is 

vs = v, + i j Z &  

where V, is the initial volume of the pure solvent. 
Then 

If po denotes the density of the pure solvent, the density of the solution, 
P, is 

VO 
VS VS 

+ gz = po- + c = po(l - D2c) + c P =  

and therefore 
1 - azp = (1 - ijzc) - uzpo(1 - UZC) = (1 - ijzc)(l - &Po) (6) 
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1260 CHRISTOV E l  AL. 

On the other hand, the viscosity of the solution is given as a function of 
the particle concentration c as follows (3): 

where [q] is the intrinsic viscosity of the particle and qo is the viscosity of 
the pure solvent. 

Substituting Eqs. (6) and (7) in Svedberg Eq. (2), we get for the relative 
velocity of one particle in the solution 

where 

Now we take into account the backflow effect. Denote by Sp and 6, the 
actual velocity of the hydrated particles and the solution, respectively. Then 
the equilibrium between the transfer of the hydrated particles with partial 
volume cp and the transfer in the opposite direction of the solution volume, 
1 - cp, takes place: 

Therefore 

ap = 6 - 6, = 6(1 - cp) 

The partial volume can be expressed as 

where vhy& is the volume of the hydrated molecule, No is Avogadro’s 
number, and M is the molecular weight of the particle. 

On the other hand, 
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MATHEMATICAL MODELING OF SEDIMENTATION PROCESSES 1201 

where u is the so-called Simha coefficient, which is a well-known function 
of the axis ratio of the equivalent hydrated ellipsoid. Finally, we have 

In this way, Eq. (5) is obtained. It should be noted that for small con- 
centrations, Eq. (5) could be replaced by both 

SO 

l +  
V 

s=so 1 - u 2 +  [q] +; c = ( (- [ql) ) ( 
This model contains both of the existing models mentioned above as 

partial cases. The experimental data ( 3 , I O )  indicate that the model S = So/ 
(1 + k2c) is adequate for synthetic polymers of high molecular weight and 
for various biological macromolecules with a large axis ratio, such as DNA. 
For such macromolecules the intrinsic viscosity [q] and the Simha coeffi- 
cient v are large, and [qlc is large even for low concentrations. Then a 
good approximation for Eq. (5) is 

s=- SO 
1 + k 2 ~  

where k2 is close to [q] ([q]/v 4 [q]). As an experimental verification, we 
give the data for tobacco mosaic virus. Lauffer experimentally shows in 
Ref. 10 that S = So/(l + 27 .8~) .  For tobacco mosaic virus (3, I ] ) ,  
[q] = 28 mL/g, u = 37, and E2 = 0.73 mL/g. By using our model, we 
obtain from Eq. (5) 

1 - (0.73 + 28/37)~  - 1 - 1.49~ - SO - 
1 + 28c - so 1 + 28c 1 + 29% s = so 

for a relatively small concentration c, which is in good agreement with 
Lauffer’s results. 

The second model, S = So(l - klc) ,  fits well the data for globular pro- 
teins and spherical viruses. For such particles, v is near to 2.5 and [q] is 
somewhat less than 4 mL/g. Then [qlc 4 1, even for high concentrations, 
and Eq. (5) becomes 

s = so(l - (v2 + [q] + u ) c )  V 
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1262 CHRISTOV ET AL. 

As an example we give the data for bovine serum albumin. Taylor (12) 
found that S = So(l - 5.4c), where SO = 4.31s. From Ref. 4 we have 
[q] = 3.9 mL/g, v = 5.25, and E2 = 0.73, and from Eq. (8) we obtain 

Table 1 gives a comparison of Ks published data from Ref. 4 and the 
corresponding values from our model. 

It should be noted, however, that in some cases the values of K, predicted 
by our model and the data contained in the above-mentioned table are 
essentially different; for instance, for myosin rabbit, myosin rabbit guan- 
idine-denatured, and a2-macroglobulin. 

The general model of Eqs. (1.1)-(1.3) with S from Eq. (5) (via Eq. 2) 
is a nonlinear initial boundary value problem for the concentration of the 
sedimenting particles. For a nonlinear problem of this type there exists a 
global solution for any initial concentrations co(r) 2 0 (15). 

An interactive system for a numerical solution of the above initial bound- 
ary value problem was created for IBM PC/XT/AT and compatibles. By 
means of this system it is possible to simulate sedimentation and separation 
processes in a centrifuge. The algorithm for solving the nonlinear boundary 
value problem uses the finite elements method presented for this problem 
by Claverie, Dreux, and Cohen (5,  6). 

S = 4.31 (1 - 5 . 3 7 ~ ) .  

TABLE 1 

KS K, 
published from Eq. (8) 

Substance fmLW (mLfg) 

Polystyrene latex spheres 38.6 33.6 
Ovalbumin 6.2 5.8 
Bovine serum albumin 5.4 5.4 
Met-haemerythrin 7.0 5.3 
Lactate dehydrogenase, rat liver 5.2 5.4 
Albolase 6.0 5.5 
Aldolase, urea-dissociated 15.0 14.5 
Fetuin, calf, oxidized 22.2 22.4 

Zn-a,-glycoprotein, human 6.4 6.5 
Fibrinogen, bovine, urea-denatured 42.0 43.4 

y-Globulin, human 7.8 7.5 
y-Globulin, horse 7.3 7.9 
“Pathological macroglobulin” 8.7 8.2 
Bushy stunt virus 7.1 5.4 
Myosin, rabbit 73.0 218.5 
Gelatin, parent 59.0 56.0 
Myosin, rabbit, guanidine-denatured 162.0 94.0 
a,-Macroglobulin, human 5.5 8.3 
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MATHEMATICAL MODELING OF SEDIMENTATION PROCESSES 1263 

The input contains information about the centrifuge parameters and the 
experimental conditions. The initial particle concentration and the gradient 
of the solution can be represented by using the graphical editor. If the user 
knows the parameters of the sedimenting particles, he can specify them. 
Otherwise he can use a special module of the system to obtain them. This 
module solves the inverse problem, i.e., it determines the unknown particle 
parameters from the experimental data. Further information about this 
module will be given below. 

At every moment t the system displays the graph of the function c(r,t)- 
the particle concentration versus radius r .  At any moment of the calcu- 
lations the user can obtain some global characteristics of the solution such 
as the mass center, the maximum concentration, and the zone width (which 
is the size of the domain where the particle concentration is greater than 
a given value). 

The simulated experiments are in good agreement with the real exper- 
imental data. Table 2 shows the accuracy of the calculations of the global 
solution characteristics, such as the radius of the maximum concentration. 

Next, some details about the inverse problem module are given. The 
nonlinear least-squares method is used (7 ,14 ) .  The Gauss-Newton method 
is well adapted for the minimization of the functional 

m 

F ( P )  = c Wi(Yi  - Z,(P))' 
i =  1 

TABLE 2" 

Time 

~~ 

1.015 8.42 8.38 8.96 8.87 9.65 9.55 
2.09 8.42 8.38 8.96 8.87 9.66 9.55 

11.36 8.38 8.32 8.92 - 9.59 9.50 
21.15 8.34 8.25 8.88 8.81 9.56 - 
46 8.24 8.19 8.76 8.75 9.42 9.28 

"Experimental conditions: Rotor Sw4OTi, R,. = 6.84 cm, R,, = 15.87 cm, o = 35,000 
rpm; sucrose gradient: 7.5-20.5% wlw; sample: 0.4 mL BSA with initial concentration co, 
Sm., = 4.31S, Dzo.w = 6.1 x lo-' cm2/s, k ,  = 5.8 mLlg, Ez = 0.734 mg/mL; time = 16 h 
15 min, 22 h, and 29 h. r., and rexp are the radius of the maximum concentration from 
simulation and experiment, respectively. 
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CHRISTOV ET AL. 

TABLE 3” 

S SO kl 

(mg/mL) (error %) (error %) 

0.002 0.2 0.17 
0.015 2.25 0.3 
0.027 2.5 3.1 

“Calculations are made for SB,w = 4OS, 
Dm.w = 60 x 10-’cm2/s,k, = 0.3mL/mg, and 
alJ other experimental conditions are as in Table 
2. 

where Yi(i = l . . .m)  are the experimental data, P is the vector of the 
unknown parameters, Zi(P)  are the simulated data corresponding to Yi, 
and wi are appropriately chosen weights. During the calculations the Ja- 
cobian is determined with the finite difference approximation. 

The test of the inverse problem module is done in the following way. 
The solution of the system with known parameters is disturbed randomly 
in the corridor of a given error. These disturbed data are used as input 
experimental data for the inverse problem module. 

Table 3 shows the accuracy of the estimate of the arameters So and kl 
for random error with different SD (SD = + F(P) /w(m - p), where 
w = Zwi/rn and p is the number of the unknown parameters). 
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